CLI Multi-Agent Features: 3-Step Quickstart Guide¶
Run LLM Council and Heavy Swarm directly from the command line for seamless DevOps integration. Execute sophisticated multi-agent workflows without writing Python code.
Overview¶
| Feature | Description |
|---|---|
| LLM Council CLI | Run collaborative decision-making from terminal |
| Heavy Swarm CLI | Execute comprehensive research swarms |
| DevOps Ready | Integrate into CI/CD pipelines and scripts |
| Configurable | Full parameter control from command line |
Step 1: Install and Verify¶
Ensure Swarms is installed and verify CLI access:
You should see the Swarms CLI banner and available commands.
Step 2: Set Environment Variables¶
Configure your API keys:
# Set your OpenAI API key (or other provider)
export OPENAI_API_KEY="your-openai-api-key"
# Optional: Set workspace directory
export WORKSPACE_DIR="./agent_workspace"
Or add to your .env file:
Step 3: Run Multi-Agent Commands¶
LLM Council¶
Run a collaborative council of AI agents:
# Basic usage
swarms llm-council --task "What is the best approach to implement microservices architecture?"
# With verbose output
swarms llm-council --task "Evaluate investment opportunities in AI startups" --verbose
Heavy Swarm¶
Run comprehensive research and analysis:
# Basic usage
swarms heavy-swarm --task "Analyze the current state of quantum computing"
# With configuration options
swarms heavy-swarm \
--task "Research renewable energy market trends" \
--loops-per-agent 2 \
--question-agent-model-name gpt-4o-mini \
--worker-model-name gpt-4o-mini \
--verbose
Complete CLI Reference¶
LLM Council Command¶
| Option | Description |
|---|---|
--task |
Required. The query or question for the council |
--verbose |
Enable detailed output logging |
Examples:
# Strategic decision
swarms llm-council --task "Should our startup pivot from B2B to B2C?"
# Technical evaluation
swarms llm-council --task "Compare React vs Vue for enterprise applications"
# Business analysis
swarms llm-council --task "What are the risks of expanding to European markets?"
Heavy Swarm Command¶
| Option | Default | Description |
|---|---|---|
--task |
- | Required. The research task |
--loops-per-agent |
1 | Number of loops per agent |
--question-agent-model-name |
gpt-4o-mini | Model for question agent |
--worker-model-name |
gpt-4o-mini | Model for worker agents |
--random-loops-per-agent |
False | Randomize loops per agent |
--verbose |
False | Enable detailed output |
Examples:
# Comprehensive research
swarms heavy-swarm --task "Research the impact of AI on healthcare diagnostics" --verbose
# With custom models
swarms heavy-swarm \
--task "Analyze cryptocurrency regulation trends globally" \
--question-agent-model-name gpt-4 \
--worker-model-name gpt-4 \
--loops-per-agent 3
# Quick analysis
swarms heavy-swarm --task "Summarize recent advances in battery technology"
Other Useful CLI Commands¶
Setup Check¶
Verify your environment is properly configured:
Run Single Agent¶
Execute a single agent task:
swarms agent \
--name "Research-Agent" \
--task "Summarize recent AI developments" \
--model "gpt-4o-mini" \
--max-loops 1
Auto Swarm¶
Automatically generate and run a swarm configuration:
Show All Commands¶
Display all available CLI features:
Troubleshooting¶
Common Issues¶
| Issue | Solution |
|---|---|
| "Command not found" | Ensure pip install swarms completed successfully |
| "API key not set" | Export OPENAI_API_KEY environment variable |
| "Task cannot be empty" | Always provide --task argument |
| Timeout errors | Check network connectivity and API rate limits |
Debug Mode¶
Run with verbose output for debugging:
Next Steps¶
- Explore CLI Reference Documentation for all commands
- See CLI Examples for more use cases
- Learn about LLM Council Python API
- Try Heavy Swarm Documentation for advanced configuration